Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans.

نویسندگان

  • Demetris S Soteropoulos
  • Monica A Perez
چکیده

Many bilateral motor tasks engage simultaneous activation of distal and proximal arm muscles, but little is known about their physiological interactions. Here, we used transcranial magnetic stimulation to examine motor-evoked potentials (MEPs), interhemispheric inhibition at a conditioning-test interval of 10 (IHI(10)) and 40 ms (IHI(40)), and short-interval intracortical inhibition (SICI) in the left first dorsal interosseous (FDI) muscle during isometric index finger abduction. The right side remained at rest or performed isometric voluntary contraction with the FDI, biceps or triceps brachii, or the tibialis anterior. Left FDI MEPs were suppressed to a similar extent during contraction of the right FDI and biceps and triceps brachii but remained unchanged during contraction of the right tibialis anterior. IHI(10) and IHI(40) were decreased during contraction of the right biceps and triceps brachii compared with contraction of the right FDI. SICI was increased during activation of the right biceps and triceps brachii and decreased during activation of the right FDI. The present results indicate that an isometric voluntary contraction with either a distal or a proximal arm muscle, but not a foot dorsiflexor, decreases corticospinal output in a contralateral active finger muscle. Transcallosal inhibitory effects were strong during bilateral activation of distal hand muscles and weak during simultaneous activation of a distal and a proximal arm muscle, whereas GABAergic intracortical activity was modulated in the opposite manner. These findings suggest that in intact humans crossed interactions at the level of the motor cortex involved different physiological mechanisms when bilateral distal hand muscles are active and when a distal and a proximal arm muscle are simultaneously active.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological changes underlying bilateral isometric arm voluntary contractions in 1 healthy humans 2 3

Abbreviated title: mechanisms of bilateral arm voluntary contractions 11 Number of figures: 4 12 Number of tables: 2 13 Number of pages: 32 14 15

متن کامل

Corticomuscular coherence during bilateral isometric arm voluntary activity in healthy humans

Bilateral voluntary contractions involve functional changes in both primary motor cortices. We investigated whether a voluntary contraction controlled by one hemisphere can influence oscillatory processes contralaterally. Corticomuscular coherence was calculated between EEG recorded over the motor cortex hand representation and electromyogram from the first dorsal interosseous muscle when the n...

متن کامل

Corticomuscular coherence during bilateral isometric arm 1 voluntary activity in healthy humans

10 11 12 Section and Senior Editor: 13 Abbreviated title: Force and coherence 14 Number of figures: 6 15 Number of tables: 0 16 Number of pages: 29 17 18

متن کامل

The effect of bilateral isometric forces in different directions on motor 1 cortical function in humans

9 10 11 12 13 Section and Senior Editor: Dr. John Kalaska 14 Abbreviated title: Motor cortical function during bilateral voluntary contractions 15 Number of figures: 5 16 Number of tables: 2 17 Number of pages: 36 18 19

متن کامل

Characterizing rapid-onset vasodilation to single muscle contractions in the human leg.

Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 105 4  شماره 

صفحات  -

تاریخ انتشار 2011